
 

Splash!
A NEW
KIND
OF
SYSTEM
DYNAMICS
SOFTWARE

The design of

 

Unless otherwise specified, the content in this work is licensed under a Creative
Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Logos of The Creative Learning Exchange and BTN Pte. Ltd. are trademarks of the
respective organizations and may not be used without their permission. All rights
related to the names ‘Splash’ and the Splash icon are reserved by the authors.

The design of Splash! - a new kind of system dynamics software by The Creative
Learning Exchange and BTN Pte. Ltd.

The Creative Learning Exchange
27 Central St.
Acton, MA 01720
USA
http://www.clexchange.org/

Disclaimer: The content of this document is provided ‘as-is’. The Creative Learning Exchange and
BTN Pte. Ltd. make no representations and give no warranties of whatever nature with respect to
this document, including but not limited to the accuracy and completeness of any information, facts
or opinions contained therein. The Creative Learning Exchange, BTN Pte. Ltd., their subsidiaries,
their directors, employees and agents cannot be held liable for the use of and reliance on the content
of this document including any opinions, claims, estimates, forecasts and findings. This is a living
document and is subject to revision.

BTN Pte. Ltd.
28 Bukit Pasoh Road
Yee Lan Court
Singapore (089842)
http://learnwithbtn.com/

First published online on 5th November 2016.
Get the latest version of this document online at www.clexchange.org/splash
or www.learnwithbtn.com/splash

http://www.clexchange.org/
http://www.clexchange.org/
http://creativecommons.org/licenses/by/4.0/
http://www.learnwithbtn.com
http://learnwithbtn.com/
http://www.learnwithbtn.com
http://creativecommons.org/licenses/by/4.0/
http://learnwithbtn.com/

 

The Design of Splash!

Acknowledgements

The Design Team

Anne LaVigne
David Wheat
Diana Fisher

George Richardson
Lees Stuntz

Ninad Jagdish
Tracy Benson
Warren Farr

1. What is Splash?	 1

2. What will a Splash model look like?	 1

3. How will I use Splash to…	 5

3.1. Build a system dynamics model	 5

3.2. Simulate a model	 13

3.3. Import and duplicate an existing model	 17

3.4. Edit a model and compare runs	 17

3.5. Manage all my models	 24

4. Scope for Improvement	 27

5. FAQs	 29

Behind the Scenes	 33

A. Our Design Process	 34

B. Our Design Framework	 35

C. Evolution of the Design	 39

The Design of Splash!

Contents

1. What is Splash?

Whether it’s managing your health, planning your retirement or addressing climate
change, System Dynamics (SD) can help us tackle the wide variety of dynamic problems 1

we find in the world around us.

There are several software available in the market to create system dynamics models.
These tools are often highly capable and flexible products that are designed to help
advanced users. But while these software may be very suitable for professionals, they can
end up being intimidating and boring for those who are just starting to learn system
dynamics.

There is an evident need for a simple modeling software that’s designed with beginners in
mind – something that middle and high school students might use to learn system
dynamics. If this tool were to exist, it would make system dynamics accessible to a much
broader audience and help catalyze its use.

Splash is our attempt at dreaming up exactly such a software. Designed primarily for
tablets and mobile devices, Splash combines liquid physics simulations with system
dynamics in a way that emphasizes fun, delight, and ease-of-use as much as it does the
core principles of system dynamics.

2. What will a Splash model look like?

Consider the simple system
dynamics model of a bank
account as shown in figure 2.1.
This image is meant to be
representative of what the
model looks like in existing
system dynamics software.

 The term System Dynamics here is used to refer to both systems modeling and systems thinking.1

The Design of Splash! �1

Liquid Physics + System Dynamics = Splash!

Fig. 2.1: A bank account model in existing SD software

And here’s what the same model will look like in Splash:

In Splash, stocks will be represented by physical containers, flows will be represented by
pipes and auxiliary variables will be represented by circles. In addition to these familiar
kinds of system dynamics elements, Splash will also have visual mathematical operators –
elements that can be added into the model to specify the equations. Want to multiply two
variables together? Drag the multiplication operator and connect the two variables to it.
Want to divide two variables? Use the division operator. By introducing operator elements,
Splash will make math more visual and make models more transparent. A variety of control
elements will also be available for use in Splash. These include levers, sliders, switches,
step inputs and pulse inputs. When you’re making a model, you’ll be able to connect these
control elements to flows and auxiliaries and conveniently change their values while the
model is being simulated.

The Design of Splash! �2

Fig. 2.2: The same bank account model in Splash

Speaking of simulating the model, take a look at Figure 2.3. When you simulate the bank
account model in Splash, a virtual liquid representing money will flow through the Income
and Interest pipes and fall under gravity into the Cash container. Money will flow out of the
Cash container through the Expenses pipe and disappear or simply fall off the screen. The
amount of stuff going through the inflow and outflow pipes will be determined by the
equations or control elements that drive them. For example, the amount of stuff flowing
through the Interest pipe will be determined by how much stuff is in the Cash container
and what the Interest Rate is.

What is of importance is the fact that this visual appearance of matter flowing through
pipes and accumulating in containers is not a mere animation. It will be based on
simulations of physics. In order to do this, Splash will have a physics engine built right into
it. This will allow users a new dimension to experiment with. Splash will create a flexible
playground where users can come up with innovative arrangements to represent SD
models. For example, consider the model shown in Figure 2.4.

The Design of Splash! �3

Fig. 2.3: Simulating the bank account model in Splash

The Design of Splash! �4

Fig. 2.5: The CO2 model in Splash

Fig. 2.4: CO2 model in existing SD software

It’s a simple model on CO2 emission and absorption. There’s a stock of CO2 in the land
and sea and a stock of it in the atmosphere. Natural and Anthropogenic Emissions send
CO2 from the Land and Sea stock into the atmosphere. CO2 in the atmosphere gets
absorbed into the Land and Sea stock over time and this is captured by the Natural
Absorption flow.

Figure 2.5 shows how the same CO2 model is represented in Splash. The Land and Sea
CO2 stock will be built like a trough at the bottom, while the Atmospheric CO2 stock will be
created using an inverted bowl-shaped container at the top. All the flows will be set to
invert the gravitational force on the liquid flowing through them. The emission flows will
take the CO2 from the Land and Sea stock and pump it up into the atmosphere, while the
Natural Absorption flow will make the CO2 from the atmosphere fall back into the Land and
Sea trough. In this way, the model in Splash may not only be more fun to watch but will
also mimic the spatial nature of the actual CO2 cycle.

With these examples, you hopefully get a sense of what a model in Splash will look like
and how the app might be different from the existing system dynamics modeling tools. But
these images only give an overview of Splash’s concept. We’ve put a fair amount of
thought into the details of how Splash will actually work. We’ve designed its information
architecture, user interface (UI) and the entire user experience (UX). If you’re interested,
you can find more information about our design process and how the design evolved in
Behind the Scenes. For now, read on to see how you might use Splash to do all the
things you normally do with an SD software and then some.

3. How will I use Splash to…

3.1. Build a system dynamics model

When you open up Splash, you’ll see a Model Library (figure 3.1.1) listing all the models
that are on your device. The Model Library is where you will get to access and manage
your models. You’ll be able to search and sort through them, rename, duplicate or delete
them and even share them with other people. Tapping on the ‘+’ in the Model Library grid
will create a blank Creation Canvas on which you will build a new model (see figure 3.1.2).

On the sides of the Creation Canvas, you’ll have two toolbars. The toolbar on the left will
have containers (for stocks), pipes (for flows), control elements, auxiliaries and
connectors. The toolbar on the right will have all the basic arithmetic operators you might
need to create equations. It’ll also have a special tool for creating graphical functions.
Tapping on a tool will activate it. Once the tool is activated you’ll tap on the screen to add
the corresponding element into the model.

The Design of Splash! �5

The Design of Splash! �6

Fig. 3.1.1: The Model Library

Fig. 3.1.2: A blank Creation Canvas

For example, to create the Cash container you saw in the bank account model, you’ll first
tap on the Container icon in the left toolbar to activate it and then tap on where you want
the stock created on the canvas (refer Figure 3.1.3).

To create the Income pipe, you’ll tap on the Pipe icon in the toolbar and then tap and drag
on the canvas to create the flow in the direction that you want it (Figure 3.1.4). Auxiliaries,
control elements and connectors would also be added into the model in a similar way. If
you want to reposition any of the objects you create, you’ll simply have to drag them over
to where you want them to be (Figure 3.1.5). The same applies to repositioning the object
titles. Tapping on a title will bring up a keyboard with text formatting options for you to edit
it. Figure 3.1.6 shows what renaming ‘Container 1’ to ‘Cash’ would look like.

Auxiliary variables in Splash will be represented by circles (Figure 3.1.7). To help
distinguish between multiple variables, you’ll be able to add a symbol for each auxiliary
from a set of pre-built repository of icons. To do this, you’ll tap on the auxiliary to bring out
its Property Panel. Via the Panel, you can select a symbol, change the auxiliary’s color, re-
name it and adjust its default equation value (Figure 3.1.8). Containers, pipes, connectors
and control elements will also have similar Property Panels.

The Design of Splash! �7

Fig. 3.1.3: Adding a container for Cash

The Design of Splash! �8

Fig. 3.1.4: Adding flows to the model

Fig. 3.1.5: Repositioning objects

The Design of Splash! �9

Fig. 3.1.6: Naming the Cash container

Fig. 3.1.7: Auxiliaries represented by circles

Figure 3.1.9 shows the bank account model with all its stocks, flows, auxiliaries and control
elements in place, but with no mathematical operators. Even in this incomplete state, the
model can be simulated without a problem. This is because, in Splash, every element you
add onto the canvas will come with default values. For example, stocks may have a default
initial value of zero (i.e. empty containers), flows may have a default value of 10 and
auxiliaries may have default values of unity.

To add in mathematical operations to the model, you’ll tap on the operator you want from
the toolbar and then tap on the canvas to add it in. Figure 3.1.10 shows a division operator
being created. The operator will be created without any input values. To specify the inputs,
you’ll have to connect the variables that you want to divide to the division operator (refer
Figure 3.1.11). The order of the operation will be determined by which variable you
connect first and which second. Notice that in Figure 3.1.11, the order of the division
operation is actually not how it should be. It ought to be ‘Cash/Average Lifetime’ but it’s the
other way around. In case the order of any mathematical operation isn’t how you want it,
you’ll simply double-tap on the operator element to reverse it (see Figure 3.1.12). The
output from the operator can be connected to a flow, an auxiliary or another operator
element. In the bank account model, the outputs from the multiplication and division
operators are used to drive the Interest and Expenses flows respectively (Figure 3.1.13).

The Design of Splash! �10

Fig. 3.1.8: Adding a symbol for Interest Rate

The Design of Splash! �11

Fig. 3.1.9: Bank account model without math operations

Fig. 3.1.10: Adding a division operation

The Design of Splash! �12

Fig. 3.1.11: Specifying the inputs for division

Fig. 3.1.12: Double tap to reverse the equation

3.2. Simulate a model

Tapping on the play button at the top of the screen will activate the Simulation Mode. The
model title and the creation toolbars will disappear and the background color will change
(refer Figure 3.2.1). A slider will appear at the bottom of the screen to let you control the
simulation speed.

A liquid representing money will start flowing through the Income and Interest pipes, fall
under gravity into the Cash container and then flow out through the Expenses outflow. The
amount of stuff flowing through the Income pipe will depend on the position of the control
element. The amount flowing through the Interest and Expenses pipes will depend on the
values of the equations that drive them.

Once the model is in the Simulation Mode, you can no longer edit its structure. You will
however, be able to change the inputs of the model while it’s running by using the control
elements. If there’s a switch, you can turn it on and off, if there’s a slider you can adjust its
value and if there’s a lever you can set its position (refer Figure 3.2.2).

In addition to watching the liquid flow and accumulate in the system, you will also be able
to judge how the model behaves over time using a set of graphs. In Splash, all the values

The Design of Splash! �13

Fig. 3.1.13: The completed bank account model

The Design of Splash! �14

Fig. 3.2.1: Simulating the bank account model

Fig. 3.2.2: Changing inputs at runtime

of all variables in the model will be automatically graphed over time. The plots will be auto-
scaled and have a zero origin. Tapping on the plot icon on the upper right corner of the
screen while the model is in the Simulation Mode will bring up all the graphs (refer Figure
3.2.3). The graphs will be arranged in a vertically scrolling side panel. To rearrange the
order of the graphs, you’ll hold down a graph to select it, and then drag it to where you’d
like it to be. If you drop a selected graph onto another, the two of them will merge together
(Figure 3.2.4, 3.2.5). Their scales and colors will automatically get adjusted and a legend
will show up to clarify what’s what. If you want to take a closer look at the plots, tapping on
a graph will show it in an expanded view (Figure. 3.2.6)

The Design of Splash! �15

Fig. 3.2.3: Behavior over time graphs

The Design of Splash! �16

Fig. 3.2.4: Drag graphs to rearrange or merge them

Fig. 3.2.5: Merged Cash and Interest plots

3.3. Import and duplicate an existing model

Splash will be built with the ability to import models from Google Drive . To do this, you’ll 2

tap on the cloud download icon from the Model Library (Figure 3.3.1). If you haven’t
already signed into Google Drive, you’ll be prompted to do so. After signing in, you can
find, select and import the Splash model files that you want to download from your Drive.
Once the file has been imported, it’ll show up in your Model Library.

At times, you may want to duplicate a model and work on the copy. For example, consider
that you’ve imported the ‘CO2 Model’ that’s shown in your library in Figure 3.3.2. Tapping
and holding on the CO2 Model will select it and a tiny menu will pop-up on the bottom of
the screen (Figure 3.3.3). Tapping on ‘Duplicate’ in this menu will create a copy of the CO2
Model, and will ask you to give the copy a meaningful name (Figure 3.3.4). Let’s say you
call the copy ‘Carbon Cycle’. Once you’re done, it’ll show up as a separate file in your
Model Library (Figure 3.3.5).

3.4. Edit a model and compare runs

 The first version of Splash will support imports only from Google Drive. Imports from email and 2

other cloud storage services may be included in future design iterations.
The Design of Splash! �17

Fig. 3.2.6: Seeing graphs in the expanded view

The Design of Splash! �18

Fig. 3.3.1: Importing models from Google Drive

Fig. 3.3.2: Selecting a model

The Design of Splash! �19

Fig. 3.3.3: Duplicating a model

Fig. 3.3.4: Naming the duplicate model

The Design of Splash! �20

Fig. 3.3.5: Duplicate created in the Model Library

Fig. 3.4.1: The imported Carbon Cycle model

Say you now want to edit the Carbon Cycle model that you duplicated in section 3.3.
Figure 3.4.1 shows the model on the Creation Canvas. The model has flows for natural
CO2 emissions and absorption, but does not have a flow representing anthropogenic
emissions. You want to add that flow into the model along with a lever to control it while
the model is being simulated. But first, you want to save the behavior of the current model
so you can use it as a reference later on.

In Splash, you will be able to pin a run to the graphs. To do this, you’ll simulate the model
and tap on the anchor icon located at the top of the graph panel (Figure 3.4.2). Doing this
will pin the current run as a reference in all the plots. You won’t see any change in the
graphs immediately though, since the current run will exactly match the reference. You will
however, see the anchor button turn from gray to green, indicating that the run has been
saved.

Returning to the Creation Canvas, you’ll add in a flow, call it ‘Anthropogenic Emissions’

and connect a lever to control it (Figure 3.4.3). To specify the default, minimum and
maximum values of the lever, you’ll tap on it to bring up its Property Panel (Figure 3.4.4).

The Design of Splash! �21

Fig. 3.4.2: Anchoring a reference run in the graphs

The Design of Splash! �22

Fig. 3.4.3: Modifying the model structure

Fig. 3.4.4: Adjusting the lever properties

The Design of Splash! �23

Fig. 3.4.5: Simulating the modified model

Fig. 3.4.6: Graphs in the expanded view

With the necessary changes made, you’ll press play once again to simulate the modified
model. This time all the plots will show both the current and the reference behavior (Figure
3.4.5). This way, you’ll conveniently be able to compare and contrast different scenarios
against your selected baseline. If you want to take a closer look, tapping on any graph will
open it in an expanded view (Figure 3.4.6).

3.5. Manage all my models

Splash is designed for tablets and mobile devices. All your model files will be stored on
your device and will be accessible through the Splash app. The Model Library is where
you’ll get to view and manage all the models on your device. The Library will list the
models in a scrollable grid of files. The grid will keep expanding as you create and add
more models. You’ve already seen how you might use the Library to duplicate an existing
model (Section 3.3). In a similar manner, you’ll be able to select a model to rename or
delete as well (refer Figure 3.5.1 and 3.5.2).

Once you have a sizable number of models in your Library you’ll probably want some way
to quickly filter through them and find the ones you want. To do this, you’ll drag the Model
Library downwards to reveal a search bar and sorting toggles (Figure 3.5.3 and 3.5.4).
Using the search bar, you will be able to find models by their name (Figure 3.5.5). The
sorting toggles will allow you to list the models in alphabetical order or by the date they
were last used.

Just like you can import a model from Google Drive, you’ll also be able to export your
models to Drive using the Model Library. You’ll do this by selecting the models you want to
export and then tapping on the ‘cloud upload’ icon in the Model Library.

The Design of Splash! �24

The Design of Splash! �25

Fig. 3.5.1: Selecting ‘managing my allowance’

Fig. 3.5.2: Renaming ‘managing my allowance’

The Design of Splash! �26

Fig. 3.5.3: Revealing the model filtering options

Fig. 3.5.4: The search bar and sorting toggles

4. Scope for Improvement
Like any product, the design of Splash will be an ongoing project well beyond the
development and release of the initial version. Given this, it’s important to highlight areas
where there is scope to improve our design. Evaluating the final design for Splash against
the Design Framework that we had adopted at the beginning of the process helped reveal
its strengths and weaknesses (see Behind the Scenes for details of the Design
Framework). This evaluation was carried out by the design team and is based on their
intuitive, qualitative assessments of the final design.

First off, we assessed how well Splash supports the use and learning of key aspects of
system dynamics like accumulations, endogeneity, causality and aggregation. By having
liquid physics at its core, Splash drives home the idea that systems are comprised of flows
and accumulations. It also underscores the principle of mass conservation. However, the
design does not specifically nudge users towards building endogenous models. This can
perhaps be improved by having the software automatically evaluate how endogenous a
particular model is and accordingly give it an ‘endogeneity rating’. Similarly, Splash’s
design lets the user decide what level of aggregation is appropriate and what structure is
needed to capture the relevant causality. Having some kind of automatic validity
assessment built into the software might help here. But doing this would require Splash to
have access to all the necessary domain knowledge for any given model, along with some

The Design of Splash! �27

Fig. 3.5.5: Search results for ‘CO2’

form of deep artificial intelligence. Given the amount of effort needed to create such
automatic validity assessment, the feature is not included in the current design.

Moving on, we considered whether the UI and UX in Splash is intuitive and easy to use.
While the design is likely to be self-evident for the target audience we have in mind
(beginning SD learners, school students and teachers), feedback on the design from
potential users was not formally sought or received during the design process. Such user
perspectives and inputs would help inform the design and ought to be collected.

Next, we judged whether the design of Splash seems engaging. Giving users the ability to
add a guided narrative (using text and audio) to any model they create would likely make
Splash more engaging. Having inbuilt tutorials and sample models that are relevant would
also help.

At the start of the design process, we wanted the software to be flexible enough to create
a wide variety of models. The design of Splash however, is most suitable for models that
are small or moderate in size. It also does not support non-negative stocks, arrays and
mathematical operations aside from basic arithmetic. However, the amount of flexibility the
design does provide will likely be sufficient for our target audience.

Dealing with high levels of abstraction is often part and parcel of building system dynamics
models. This may be a hurdle to people learning system dynamics. We aimed to design
the software to be as relatable and concrete as possible. Splash’s design seemingly lies
somewhere between the level of abstraction seen in existing SD software and the level of
concreteness seen in entertainment media such as movies and games. It may be possible
to conceptualize interfaces that are more relatable than what’s currently planned for
Splash, but not without creating a drop in performance along other dimensions (such as
how well the software honors and promotes core SD principles).

A limitation arising from the use of liquid physics in Splash is that it may not be possible to
simulate models instantaneously. Increasing the speed at which the model simulates
would be doable, but not to a level that provides instantaneous results. This fact may be
frustrating to users who want to quickly perform multiple iterations.

Our current design efforts did not cover the audio aspects of Splash’s UI and UX. This is
certainly an area to which significant thought, effort and user testing should be devoted
while the software is being developed.

Splash’s design is not very ‘social’ in nature. It does not include any integration with social
media platforms (such as Facebook/Twitter) for users to conveniently share their work or
progress. The design also does not allow for multiple users to work on the same model, at
the same time, using multiple devices. Adding such functionality into future iterations of the
software will allow Splash to be used in participatory modeling exercises.

The Design of Splash! �28

Finally, and importantly, given that Splash is meant as an educational tool it is critical that
teachers find the software truly useful. If school teachers are to adopt and use Splash at
any serious scale, the software will have to strongly dovetail with their existing interests,
roles and responsibilities. Ways to do this might include (a) creating tutorials, sample
models, and modeling exercises that are in line with existing curricula (b) creating a
platform where students can conveniently work on modeling assignments from their
teachers and where teachers can easily review and provide feedback, and (c) pushing for
systems thinking and system modeling to be integrated into the curriculum.

5. FAQs

Will Splash models follow the XMILE standard for SD models?

The XMILE (XML Modeling Interchange LanguagE) standard describes a standard format
for sharing and distributing System Dynamics models . Unlike existing system dynamics 3

software for which the XMILE standard was developed, Splash will make extensive use of
a spatial physics simulation in all its models. Because of this fundamental difference,
Splash will not be able to make use of the XMILE standard. Later versions of the design
may seek to improve Splash’s compatibility with the XMILE standard.

How will units be specified in Splash?

Units can be added or changed via the object’s Property Panel (see Figure 5.1) by typing
in any unit name you desire. Once a unit is specified in a model, the same unit can then be
re-used for other containers and pipes. Units of stocks and flows will be represented by the
liquid material flowing through the system. Different types of liquids in a model will have
different colors.

How will unit consistency be enforced?

Given that units are represented by liquids in Splash, unit consistency will be achieved by
ensuring that different types of liquids do not mix. Containers will check for unit
consistency by only blocking and collecting the liquid for which they are intended. For
example, if the unit for a container is ‘Dollars’ and a flow of ‘People’ falls into that container,
the flow will simply pass through the container, unobstructed. Where possible, units will be
automatically assigned.

 For more information on XMILE visit xmile.systemdynamics.org3

The Design of Splash! �29

http://xmile.systemdynamics.org

The Design of Splash! �30

Fig 5.1: Property Panel for a container

Figure 5.2: Property Panel for a pipe

How will I change the color of the liquid?

To change the color of a liquid, you’ll open up the Property Panel of any associated
container or pipe and then use the color wheel provided to pick any shade and tone you
like (refer figure 5.1, 5.2).

Are the size and shape of containers and pipes fixed?

Via the Property Panel you will have the option to choose from a limited selection of
container shapes (see figures 5.1). Similarly, you’ll also be able to change the visual
appearance of a pipe. Once a container or pipe is selected, a rectangular bounding box
will appear. Dragging on the boundary handles will resize it and accordingly adjust the
width and height of the object.

If a container is filled beyond its capacity, will the excess liquid overflow?

Yes. Considering that Splash employs a physics simulation, if the net volume of liquid
flowing into a container exceeds the container’s capacity, it will result in an overflow. This
overflow amount will not show up in the graphs as those will only track how much liquid is
inside a given container.

Will Splash support arrays?

No.

Can stocks in a Splash model have negative values?

No.

Is there any way to specify mathematical equations in Splash without using the
visual math operator elements?

No.

Will Splash have storytelling?

Storytelling in an important part of effectively sharing and communicating complex models.
However, the initial version of Splash will not have storytelling functionality. Later iterations
of the design may address this.

Will a Splash model always be ready to simulate?

All model elements in Splash come with default values. Because of this, Splash models
will nearly always be ready to simulate. The only case in which a model cannot be

The Design of Splash! �31

simulated is if there is an incomplete mathematical operation. In this case, pressing the
play button will not simulate the model. Instead, the play button will turn red to show that
something is wrong and the problem element will be highlighted for the user to fix (refer
Figure 5.3).

What sort of learning scaffolding will Splash have?

Apart from having a tour of the UI and a contextual help button on most screens, Splash
will come with a set of sample models built-in. These sample models will be aimed at
helping users learn the concepts of system dynamics and guiding them through the
process of effectively using Splash.

On what devices and platforms will Splash be available?

Splash is primarily designed for tablets and mobile phones. It will be developed for iOS
and Android devices. A modified version of the app will also be made available for
download on Chromebooks. Later iterations of the software may support even more device
form factors and operating systems.

The Design of Splash! �32

Fig. 5.3: Highlighting incomplete equations

Behind the Scenes

The Design of Splash! �33

A. Our Design Process

Figure A.1 illustrates the generic nature of any design process. It often begins with a
problem that needs to be solved or an idea that you want to turn into reality. It’s exciting
and full of possibility. But as you dive deeper into this idea and accommodate different
points of view, you’re likely to find that it’s more complex and chaotic than initially
expected. At this point in the process, it’s highly likely that you end up with a convoluted
design that superficially addresses everyone’s individual concerns but misses the mark
overall. The biggest challenge is finding your way through this forest of chaos in a manner
that reveals a design that is both effective and fundamentally elegant.

To improve our chances at revealing such a design, we put together a design framework
that would help us navigate when times got tough. This framework consisted of Guiding
Questions, Key Design Criteria, User Personas and a set of Use Cases. Details of the
design framework are presented in the following section.

Once the framework was sufficiently identified, initial design candidates were sketched out
for discussion and debate. These design candidates were evaluated based on the Guiding
Questions and Key Criteria. Design elements that seemed to perform well were adopted
and merged, while others were archived. In this Darwinian manner, the design candidates
evolved into a single better design. As this final design emerged, its visual representations

The Design of Splash! �34

Figure A.1: The Design Process

moved from low-fidelity sketches and wireframes to higher fidelity wireframes and a
clickable prototype.

B. Our Design Framework

B.1. Guiding Questions

Guiding Questions are a select set of questions that help outline the fundamental purpose
of the design effort. These questions were intended to help us quickly sift through design
ideas at a high level to find those that fit our objective and reject the rest. The Guiding
Questions behind the design of Splash are:

a) What will help a beginner learn SD?

This question was further clarified as:

i. What will guide a beginner from a blank sheet to successfully simulating SD models
with minimum of expert support?

ii. What will make an SD modeling software self-evident?

b) What is the best way to honor and communicate core SD principles?
c) What will make SD more intuitively appealing?

B.2. Key Design Criteria

Design Criteria describe the various aspects along which the design must perform well.
They collectively serve as a multi-dimensional yardstick that can be used to evaluate and
compare design options.

The Key Design Criteria for Splash include:

a) True to SD: The extent to which core SD principles are honored

i. Accumulation
ii. Endogeneity
iii. Causality
iv. Aggregation

The Design of Splash! �35

b) Ease of Use

i. Self-evident design
ii. Teacher-friendly

c) Engagement

i. Tells a story
ii. Supports curiosity

d) Development Effort: Time and effort involved in building the design

e) Shareability: Software being adopted as a standard tool

f) Accessibility: Compatible with available computing devices

i. Laptops/Desktops
ii. Mobile Phones
iii. Tablets

g) Flexibility: Allows the user to make a wide variety of models

h) Relatability: More concrete than abstract

B.3. User Personas

User Personas are descriptions of potential users of Splash. Personas are intended to
capture the relevant goals and behaviors of people in the target audience. They help focus
and humanize the numerous design decisions and ensure that the conversation stays
relevant to the intended users.

In more extensive design efforts, user personas are developed after a significant amount
of user interviews, market research and field observations. However, due to time and
resources considerations, the user personas for Splash were developed based on the
group’s extensive experience interacting with the pre-university teachers and students who
form our target audience.

A total of five user personas were identified. Three of them represent pre-university
students and two represent pre-university teachers. They are:

The Design of Splash! �36

The Students:

Ellie
Age: 10
Sex: Female

• High logical/mathematical intelligence
• Has a natural talent for music
• Finds math and science fun
• Does not care much about conforming to norms
• Hates things that slow her down

Jamal
Age: 12
Sex: Male

• Interested in systems thinking because of its potential for interesting insights
• Finds math and equations boring
• Enjoys working with others; Not a fan of lecture style teaching
• Wants to make a significant contribution to the world

Maya
Age: 14
Sex: Female

• Loves painting; Has worked hard to become skilled at it
• Comfortable with math
• Disturbed by poor aesthetics
• Understands the importance of practice
• Understands the value of respecting established norms

The Teachers

Mary
Age: 32
Sex: Female

• Comfortable with ambiguity
• Largely endogenous perspectives
• Has a growth mindset
• Believes she can learn a lot from her students
• Believes that students are capable of exceeding expectations, including their own

The Design of Splash! �37

Abe
Age: 50
Sex: Male

• Not comfortable with ambiguity
• Largely exogenous perspectives
• Knows a lot (he thinks so)
• Underestimates students’ potential
• Not a co-learner

B.4. Use Cases

Use Cases are a set of steps that a user might perform while working with the software to
achieve a particular objective. Two use cases were developed to aid the design of Splash.
The first follows a user building a new model from scratch while the second is about a user
modifying an existing model. Together, these use cases cover a large percentage of the
core functionality of the software.

Use Case A:

i. Start a new model
ii. Create the model structure
iii. Specify equations and other properties
iv. Adjust simulation settings
v. Simulate the model
vi. Make changes to the model and re-simulate

Use Case B:

i. Import an existing model
ii. Duplicate the model to have a copy of the original
iii. Run the model and save the run as a reference
iv. Modify the model structure
v. Re-simulate the model and compare runs
vi. Export the modified model

The Design of Splash! �38

C. Evolution of the Design

 C.1. Initial Design

Based on the intent captured in the design framework, an initial design candidate was
conceptualized. Figures C.1.1 - C.1.3 show some of the wireframes developed to
represent this initial design. The design adopted the common scheme for visualizing
system dynamics models – that of using boxes to represent stocks, thick arrows to
represent flows, and thin arrows to show connections (refer Figure C.1.1).

In order to reduce the visual clutter that is common in system dynamics models, it would
be possible to create the model structure at various levels of ‘depth’. The structure at
deeper levels would appear translucent and only become completely visible on zooming
into the model. On simulating the model, the images for the stocks, flows and auxiliaries
would grow and shrink to visually highlight the changes in magnitude over time (Figure C.
1.2).

In addition to this, the behavior of all variables over time would be automatically plotted in
a set of graphs. The model structure could be color-coded by the user so as to visually
emphasize the relationship between a stock and its flows (Figure C.1.3). Any such color
coding would continue into the graphs to make the dynamics easier to spot.

This initial design performed well along several design criteria (such as True to SD,
Development Effort, Accessibility). A lot of design features conceived as part of this initial
design have made their way into Splash. For example, the creation toolbar on the side of
the canvas, the model edit/play modality, the side Property Panel, and the auto-generated
graph panel can all be seen in the final design.

However, the initial design was not perceived as being sufficiently engaging or extremely
easy to use. For example, the play/edit modes accessed via the toggle button on the
bottom of the screen could have potentially confused and frustrated new users. The ‘box-
and-arrow’ visualization scheme did not seem like it would be very engaging for beginning
learners such as pre-university students. The similarity of this visual scheme to other SD
modeling tools that are currently available in the market also raised valid questions about
whether this design effort was worthwhile.

The Design of Splash! �39

The Design of Splash! �40

Fig. C.1.1: Initial Design: Edit mode

Fig. C.1.2: Initial Design: Model simulation

C.2. Using physics

One of the ways in which people have tried to make system dynamics easier and more fun
to learn is by using tubs, pipes and pumps to create models in real, physical space.
Learners can use such setups to simulate the dynamics of the model by pumping water
from one tub to another through the pipes.

We considered that if the key aspects of such kinesthetic exercises were combined with
our initial design, it would likely boost the design’s engagement factor. Accordingly, we
pivoted away from our initial ‘box-and-arrow’ approach and worked to combine liquid
physics simulation with system dynamics in a single design. Figure C.2.1 shows the
wireframe for the bank account model from this phase.

The Design of Splash! �41

Fig. C.1.3: Initial Design: Graphs and color coding

C.3. Adding Visual Math

Notice that even after the pivot to a physics simulation, the revised design showed in figure
C.2.1 has no toolbar for mathematical operators. At this stage, we had imagined that users
would first add the model elements onto the canvas and then use the Property Panel to
specify their equations. This is a workable approach and is quite common in existing SD
software. But it seemed like the most the fun part of SD modeling is simulating the model
and watching the dynamics unfold. Reducing the number of steps involved in going from a
blank canvas to a model that can be simulated would let users get to the fun stuff faster
and potentially make the learning process more appealing.

Our initial concept for making the models simulation-ready was to have the software guess
the equations based on the inputs. The challenge with this approach is that arriving at the
‘correct’ equation for the model structure will require the software to have extensive
domain knowledge and some form of artificial intelligence. Guessing equations without any
domain knowledge could result in the software getting them wrong. In this case, users
would probably have to scan through every equation in the model to find the one(s) they
need to adjust. In effect, trying to guess the equations might have needed just as many, if
not more, steps for a user to go from a blank canvas to simulating a model.

The Design of Splash! �42

Fig. C.2.1: Liquid Physics Concept: No visual math

As a middle-path, we chose to give every stock, flow and auxiliary created a default value
and then let users visually create the math needed in the model using operator elements
(Figure C.3.1). Having operator elements enables users to conveniently add basic
arithmetic equations and graphical inputs into the model without needing to use the
Property Panel. Further, by limiting each operator element to only two inputs we entirely
avoided the need to guess equations. Equations with more than two variables may still be
constructed by connecting the results from multiple operator elements in series. A side
benefit of including operator elements is that they boost the transparency of the models,
making them less of a black-box.

The Design of Splash! �43

Fig. C.3.1: Adding visual math

