A brief interaction between the author and her four-year-old son at a traffic rotary illuminates the awareness young children have, often overlooked, of systems and connectedness.

The road construction project around the local rotary had been going on for over a year. As a result, the whole town was cranky. One afternoon, my son and I drove the rotary just before 5:00 p.m., along with throngs of irritable commuters, anxious to get home. Tempers were short and the sound of car horns pierced the air. Pointing to the tangle of traffic in front of us, my then four-year-old asked: “Mommy, what happens when everyone says me first?”

I was used to his asking questions. Typically, Jack asked about categories (“Animals aren’t people, are they?”), or how things work (“Why do bees kiss the flowers?”) or facts (“How hot is the center of the earth?”). This question was different; this one had to do with causes and consequences. I considered talking to him about the cost of maximizing individual gain, but held back and asked instead, “What do you think would happen if everyone said me first?”

He pressed his nose against the window, paused, and said, “Well, there might be a lot of accidents. Or maybe even a huge crash!”

“Can you think of other times when everyone says me first?” I was thinking about overfishing, gas guzzlers, and our overcrowded community pool.

Jack responded, “You know how you said it’s not good to let the water run when we brush our teeth, ’cause if everyone did that the reservoir would go down?’ Well, it’s kind of like that.”

At the age of four, he was aware enough of the general notion of systems – two or more parts that interact to form a whole – to make a complex observation: the rotary and the reservoir were common resources. Like water, air, and playgrounds, these are resources that many people use, and for which no individual is solely responsible. Moreover, in asking the question, “What happens when everyone says me first?” he recognized the impact of individual decisions on the larger whole. Without knowing it, he stepped right into the middle of the greatest dilemma in commons-related issues: each individual action is defensible on its own, but they can combine to have a devastating impact on the larger whole.

Connect the Dots continued on page 3
EDITORIAL

As the days lengthen and the sun warms us, the Creative Learning Exchange is bustling with activity. You all know our biennial conference will be held at Babson Conference Center in Wellesley, MA, again this year, June 28-30. Check out the draft program in this newsletter, register now, and join us for the extensive offerings of learning and networking opportunities. There are still a few scholarships available, so get your applications in. Don’t forget our new introductory workshop, offered all day Friday, June 27, and throughout the conference.

It is wonderful to hear from folks across the world who have joined us in introducing system dynamics and systems thinking to K-12 education. Ian Parker is one such companion on the journey. He has been doing creative work on his own, “down under.” And it is always fun to hear what is fomenting at Innovation Academy with Chris DiCarlo! Be sure to catch up with these innovative teachers in this issue.

I hope all of you survive the testing season and are able to enjoy some freedom in your classrooms at the end of the year, bringing new and creative learning to your students. Try some of the simulations online at the CLE website, either Dollars and Sense or the Oscillations Simulations. What a good way to give your students a different perspective and a fun activity!

We hope to see many of you in June.

Take care,
Lees
(stuntzln@cleexchange.org)

My Experience with System Dynamics as a High School Teacher
Ian Parker

My name is Ian Parker, from Australia. I have sporadically followed the fortunes of System Dynamics, especially in the education sector, for more than 20 years now. At one time, when the System Dynamics conference was held in New Zealand, I was almost able to attend. Now, I am about to retire from teaching—Science (specialising in Pre-College Physics) and Computing Studies.

I developed a short course in Systems Thinking for science students which I have been able to run periodically since about 1992. It first used Stella 2.2.2 and a Macintosh PB140 computer. I also wrote a few Hypercard stacks to help students perform data logging well before data logging became fashionable in schools in Australia. Later courses used commercial dataloggers. In the later courses, we extracted the essential data from the data logs, using AppleScripts I developed for the purpose.

I will mention just two amongst a number of intermediate models/simulations I developed for the course, which may be of interest.

I built a 3-channel hydroponics setup. Yes, I did make the device specifically for this course. It’s about 1 metre (3 feet) long, made out of 3 parallel connected actual hydroponics channels. I used it to demonstrate how water starvation models rocket pogoing, gargling, and what we call kangarooing in a motor vehicle (when its running out of fuel).

I also used the hydroponics channels to demonstrate what happens when one channel is abruptly blocked—modeling an aneurism. In short, this was a system able to model catastrophic failure with little difficulty. (All I did was introduce zero flow in one of the channels after the channels were loaded and flow became stable—in both the actual system and the model system.)

I also made as accurate a Stella abstract model as possible of the Apollo 11 launch vehicle, from data collected from various books. It simulates approximately the first 15 minutes of flight. To my surprise, it had a glitch—it showed noticeable negative accelerations close to the point of Stage III separation.

The initial work was done before we had the Internet. I did not think much of it until about six years later, when I researched this phenomena on the Internet. NASA had published documents about it and the problems it caused (Ullage).

The important things for me, in presenting the course, were:
(a) we do not need complicated models, abstract or physical, to demonstrate what seems to be complicated or random behaviour;
(b) there is similarity in behaviour in many phenomena if you are willing to look and recognise. I’m with S. Wolfram on this one;

My Experience with System Dynamics continued on page 12
Learning to Connect the Dots

continued from page 1

Many children intuitively grasp the nature of systems, as Jack did. They can see, for instance, how a common but limited resource, such as water, air, land, highways, fisheries, energy, or minerals becomes overloaded or over-used, and how everyone experiences diminishing benefits. However, these children don’t always have many opportunities to develop those insights into a systems awareness that will serve them all their lives. Parents, educators, and other adults can help them learn to “connect the dots”: to see beyond the surface, to recognize interconnections and dynamics among people, places, events and nature, and to begin thinking about how to use those interconnections to improve their world.

Where do our children learn to think this way? How do you nurture a child’s natural intelligence about systems and help him or her to become systems literate? How can you confirm for your children what they already know: that their world is interconnected and dynamic, a tightly woven web of related, interacting elements and processes, and as such, is indeed meaningful? How can this insight become an underlying learning aesthetic with which they can build their lives?

Why Systems Literacy Matters

Children today are growing up in a world in which oil spills, global warming, economic breakdowns, food insecurity, institutional malfeasance, biodiversity loss, and escalating conflict are commonly at the top of the news. For children to make sense of these trends, they must become aware of the causes and consequences in a slew of interconnected systems, including families, local economies, the environment, and more. Ideally, we want our children to take what author Edith Cobb, author of *The Ecology of Imagination in Childhood*, calls “a reticulate approach” (resembling a net or network) to knowledge and sense-making.

Key Concepts

- Children possess an innate understanding of complex systems.
- This understanding is crucial to solving the interlinked social, environmental, and economic problems of today’s world.
- Education for children of all ages can and should be designed to nurture this systems-based intuition.

To be literate means to have a well-educated understanding of a particular subject, like a foreign language or mathematics. In many fields, the knowledge must be both comprehensive and abundant enough that you are capable of putting it to use. Systems literacy represents that level of knowledge about complex interrelationships. It combines conceptual knowledge (knowledge of system principles and behaviors) and reasoning skills (for example, the ability to see situations in wider contexts, see multiple levels of perspective within a system, trace complex interrelationships, look for endogenous or “within system” influences, have awareness of changing behavior over time, and recognize recurring patterns that exist within a wide variety of systems).

When people aren’t literate about systems, too many human activities are like those cars jammed into the roundabout: unaware of the pattern that connects them and, thus, prone to exploitive and destructive results. Systems literacy is a prerequisite for realizing the kinds of aspirations that people increasingly have in an interconnected world, but that seems impossible to achieve from a fragmented point of view. As the poet, novelist and essayist Wendell Berry puts it, “We seem to have been living for a long time on the assumption that we can safely deal with parts, leaving the whole to take care of itself. But now the news from everywhere is that we have to begin gathering up the scattered pieces, figuring out where they belong, and putting them back together. For the parts can be reconciled to one another only within the pattern of the whole thing to which they belong.”

When children learn about systems and become more explicitly systems literate, their worldview shifts. In *The Power to Transform*, Stephanie Pace Marshall explains that the value of nurturing systems literacy comes from “the power of an alternative...
Learning to Connect the Dots

continued from page 3

worldview.” She continues, “When we perceive and experience wholeness, we are transformed. We no longer see nature, people, events, problems, or ourselves as separate and unconnected.

One natural consequence is greater compassion for others. This is a part of peoples’ makeup that can get suppressed by the prevailing culture in many places, but that can be uncovered and drawn out by experience and learning. When children look for the connection between themselves and other people, places, events, and species, they no longer feel like outsiders looking in at others’ worlds. They are now insiders, experiencing the connection to “other” as the farmer is connected to the soil and the salmon is connected to the river.

Another consequence is that children start to see themselves as part of, rather than outside of, nature. Imagine that a 12-year-old, living in a suburban village, is presented with two pictures of a lawn. The first is filled with wildflowers and looks somewhat messy and random. The second is lush, green, neat, orderly, well-groomed, and obviously well-fertilized. Which is more beautiful? The second image, of course, represents the way that a beautiful lawn is conventionally expected to look in many communities, and many 12-year-olds would pick it, but a systems-literate student might well prefer the disorderly lawn. He or she would know that the lawn worked with the landscape’s natural processes, encouraging a diverse group of plants and animals to grow, maintaining its own ecological balance, and adding little or no waste to the ecosystems around it. On the other hand, the orderly, straight, groomed lawn could only survive by contradicting natural processes. It would require ongoing management and its continued success would lead to a variety of unintended negative consequences: greenhouse gas emissions from the lawn mower, use of fossil fuels to make chemical fertilizers and treatments, the death of beneficial insects from pesticides, the added economic costs of lawn supplies and maintenance, the stress it puts on the family’s budget, the removal of some plants while allowing others to overrun the ecosystem (potentially causing the need for more pesticides), and the run-off of chemicals into local water sources with unknown effects.

As they grow up and learn about the economy, climate, education, energy, poverty, waste, disease, war, peace, demographics, and sustainability, children who are systems literate will tend to look at all these issues as interrelated. From the systems perspective, nothing stands alone: my climate is your climate, your infectious disease is my infectious disease, your food shortage is my food shortage. Systems literacy makes people less likely to blame a single cause for challenges and problems. Instead, it becomes a habit to look for recurring patterns that exist among a wide variety of systems, to seek out indicators of interrelated causes (knowing that very complex causes can leave deceptively simple tracks), and to anticipate how the functioning of a living system will change if a part or a process is changed. Systems thinkers recognize that big actions can have small consequences – and vice versa. They seek diversity, knowing that living systems depend on the variety, complexity, and abundance of species to be healthy and resilient. They look for closed loops of production and consumption, where waste from one source can be “food” for another. They question the assumption that bigger is always better.

Paying attention to living systems also raises awareness of the Earth’s (or biosphere’s) pace of change, often in stark contrast to the hurried, mechanistic pace of the technosphere. Systems literacy makes it easier to see the commons: the shared gifts of nature such as water, air, land, fish, and also the shared efforts of our communities, upon which we depend, and for which we are all responsible.

Learning about systems, and about living systems in particular, can help children come to a deeper, more compassionate, more accurate, and more sustainable sensibility about what is beautiful, what is peaceful, and what is essential.

Changing the Learning Aesthetic

When we ask students to move beyond simple, linear explanations of causes, we are asking them to be literate about systems. Yet most adults in the U.S., including most industry and government leaders, were not explicitly taught skills related to
seeing systems of multiple causes, effects, and unintended impacts. Rather, people were taught that the best way to understand a subject was to analyze it or break it up into parts. Research in dynamic decision making shows that when adults are faced with dynamically complex systems—containing multiple feedback processes, time delays, nonlinearities and accumulations—performance is biased and suboptimal.⁴

Herein lies an intriguing opportunity. When it comes to developing greater literacy about systems, most adults are learning along with their children. Rather than an obstacle to children’s learning, this could be a major asset. For most students, co-learning (with parents, teachers, or peers) offers a chance to take an active role and develop higher-order skills such as critical and divergent thinking, analysis, synthesis, and problem solving.

Most classroom structures today do not encourage system literacy. While the world is becoming increasingly more complex, educators can find themselves continuing to fragment knowledge and real world problems through compartmentalized curricula; science is taught in one class, math in another, English in another. Courses in natural science focus on the material world, while courses in the social sciences focus on the social world, and neither class acknowledges the intensive, ongoing ways in which these two worlds influence each other. When we talk to children about issues, such as climate change, terrorism, and water use, we can raise their awareness of the material and social worlds, bringing together insights from history, biology, and literature, as well as the daily newspaper. Most importantly, we can come to richer understandings by tapping into the experience and insight that children already have.

Conversations with Fritjof Capra helped me clarify this division between the natural and social sciences. According to Capra, “this division will no longer be possible, because the key challenge of this new century – for social scientists, natural scientists, and everyone else—will be to build ecologically sustainable communities, designed in such a way that their technologies and social institutions—material and social structures—do no interfere with nature’s inherent ability to sustain life.”⁵

Everyday Ways To Foster Systems Literacy

Some experts in the field have argued that, because systems operate in non-linear ways that can be difficult to assimilate, systems thinking requires access to advanced training in complex systems theory, system dynamics, and agent-based modeling. Certainly, these fields of study can help people move beyond natural, intuitive understanding of systems to more expert levels of systems literacy. At the same time, there is a growing body of research (including my own research with 10- and 11-year-olds) that shows that many students intuitively “think about systems,” both natural and social, without any formal training and long before they’re ready for graduate school. Children as young as four and five show a capacity for understanding systems behaviors, which suggests that systems thinking may be part of a child’s innate intelligence that is “corrected” by adults who have been taught to compartmentalize phenomena.⁶

R.W. Kates and C. Katz studied three-to-five year olds and their understanding of the hydrologic water cycle. These researchers found that “some sense of cycles” (e.g., the domestic water cycle and the cloud-rain cycle) existed among the four-year-old children, while the five-year-old group described “a more complex and extensive hydrology.”⁷

Piaget, who was familiar with Austrian-born biologist Ludwig von Bertalanffy’s notion of “open systems,” recognized this natural systems intelligence when he observed: “There is in the child…a spontaneous belief that everything is connected with everything else and that everything can be explained by everything else.”⁸

We see this natural intelligence in young people who partake in role-playing games such as *Dungeons and Dragons* and computer games like *Zoo Tycoon* and *SimCity*. In the thick of this “play,” children track numerous interdependencies, manage large amounts of data, and anticipate unintended consequences. In play, they flex their systems thinking muscles.

Without knowing it, he stepped right into the middle of the greatest dilemma in commons-related issues: each individual action is defensible on its own, but they can combine to have a devastating impact on the larger whole.

Opportunities for nurturing systems literacy in children are all around us, from the classroom and the playground to the car, the library, the dinner table, a school garden, the bath, and the grocery store. With a thoughtful guide, the great outdoors offers a fertile classroom for understanding the interrelationships and dynamics of species. Time in nature is not just healthy (as Richard Louv, author of *The Nature Principle: Human Restoration and the End of...* Connect the Dots continued on page 6
Learning to Connect the Dots

continued from page 5

Nature-Deficit Disorder, reminds us), it is also important if we are to learn to live sustainably with our natural environment. Buckminster Fuller, the American engineer, systems theorist, author, designer, and creator of the geodesic dome, also pointed to the concept of nature-as-teacher: “I am confident that humanity’s survival depends on our willingness to comprehend feelingly the way nature works.” Why not encourage the seven-year-old child, enthralled with the life cycle of a butterfly, to explore other “life cycles?” Or wonder, with the 10-year-old fishing enthusiast, how a worm in the garden may be useful for his next fishing trip, but also useful as a soil tiller and a potential food source for a hungry robin. In these ways, we can give children direct experiences with unadulterated nature so that they, as Masanobu Fukuoka, farmer, and author of The One-Straw Revolution urges, “… can instinctively understand what needs to be done and what must not be done – to work in harmony with (nature’s) processes.”

Here are some other examples of conversations and activities that can help young people become more systems literate:

Help children to connect the dots.

Set an example: talk about relationships, not just things. Instead of simply saying, “That’s a brown chicken,” point out that the chicken lays eggs and eats the insects in the farmer’s garden. Recognize and encourage the child’s natural tendency to see a network of possible causes and consequences. Ask the child to draw the connections he or she sees among cars, air, plants, and people.

Simple cause-and-effect diagrams can help to reveal the patterns underlying sticky problems. For instance, think of an ongoing household battle.

Perhaps your son hates to clean his room and you really don’t like to ask him to clean his room. Throughout the week, you remind him about the chore. Your son resists. By the end of the week, your frustration is boiling over. Finally, you threaten a week of no TV and your son relents. When he shows his clean room, you are happy. But the next day, with the pressure off, he slowly reverts to his old habits. Mid-way through the week, you feel your frustration build again, this time with more pressure.

One way out of this dilemma is for you and your son or daughter to sit down together, and each draw simple diagrams showing the situation as you see it.

By connecting the dots, both sides can see that you’re caught in a closed causal loop. It is a balancing feedback process, a set of interactions that return a system—like your body, an ecosystem, market systems—back to a state of equilibrium. By their very nature, they are goal-seeking, working to bring things to a desired state and keep them there.

Once you see this pattern, you can look for ways to break it. One strategy is to revisit and reset the goal. Perhaps your standards as a parent are too high – you’re looking for the pristine child’s bedroom that one might see in House and Garden—while your child’s are too low. Can you develop a “maintenance” goal that both parent and child agree upon? Since that may not be enough to overcome this ingrained systemic structure, can you also add in a link to the system, such as planned clean-up time twice a week, to achieve the maintenance goal?

Talk about change over time.

Trace and anticipate changes over days, months, and years. For example, a child may notice the slow decay of a fallen tree in a park or in the back yard. Or you may point out less obvious changes, such as the changes in a pasture when chickens are allowed to roam free.

You can work with your child to draw simple line graphs to track behavior over weeks or months—anything from the levels of happiness at school to the money in your savings account to the number of beavers in the pond. Once you have a graph and you can see some behavior rising, falling, or oscillating, ask: what set of interrelationships might be causing this pattern?

For a personal demonstration of change over time, encourage children to find a “sit spot” where they can focus on some outdoor phenomenon, returning on a regular basis to see how it changes. Examples might include a tree with leaves that turn color, a pond whose water level rises or falls, or a place with a
Look for the patterns that repeat. When a child observes drivers’ behavior at the traffic rotary being similar to people letting the water run when they brush their teeth, or that the growing conflict between two kids at school is similar to the escalating conflict between two nations, compare those patterns. Give your own nicknames to the patterns you see. For instance, you might call that escalating conflict “snowballing,” and then when a fight between siblings begins to escalate at home, you can ask, “Are you snowballing now yourselves?”

Many Dr. Seuss books, like The Lorax, The Sneetches, and The Butter Battle Book, have great examples of balancing and reinforcing feedback.

Change perspective. When there’s a case of bullying at school, try to talk about the perspectives of the aggressor, the target, the teachers, and the bystanders. Create a role play so the students can act out the situation or problem from different perspectives. What new ideas or insights come from changing some of the situational factors—such as how close they stand to each other when they tell the story?

Anticipate unintended consequences. Take a rubber band and stretch it, saying, “Let’s have some fun and see how far we can stretch how we look at time.” Unstretched, the rubber band represents five years into the past and five years into the future. By doing this, we are asking the young person to adopt what sociologist Elise Boulding called, “the extended present,” a view of time that extends the present to five, 50 or 200 years ahead and behind. For example, disposable diapers take between 100 and 500 years to decompose. Talk about the fact that no one knows exactly how long it takes, because no one has lived long enough to see it happen. The extended sense of the present is particularly appropriate for living systems, because many living systems, both natural and social, don’t generate a full cycle of behavior over short time intervals. You won’t understand the seasonal cycle of your garden, for instance, if you observe it for only a day or two.

Think like a bathtub. Make it a game to look for things that build up or accumulate. A bathtub for instance, accumulates water. System dynamicists call these accumulations stocks. Trees, fish, people, goods, good will, money, the national debt—these are all stocks. The rate at which the stock changes is its flow. Challenge children to think in terms of stocks and flows. For instance, you can ask: If the water is draining out of the bathtub twice as fast as it is flowing in, what happens to the level of the water in the tub? (The answer: The level goes down!) What if the amount of CO₂ emissions flowing into the atmosphere is flowing in at twice the rate that it is being drained out (through, for example, carbon sinks)? What happens to the amount of CO₂ in the atmosphere? (The answer: the amount increases, which is actually what is happening today.)

Stocks and flows play a key role in generating some of the most perplexing dynamics we encounter. Studies of the pesticide DDT, for example, have shown that while DDT evaporates from the surface of plants and buildings over six months, it remains in the tissue of fish for up to 50 years. The amount of DDT in fish tissue is a stock with very slow outflow. We need to understand these accumulations to understand the source of many of the major challenges we face today—economic, social, and environmental.

When we look at stocks and flows, we understand, for instance, that a deficit (the rate at which a country borrows money) is a flow and the national debt is a stock. We understand, as well, that taking the national deficit down to zero doesn’t necessarily mean that we will get rid of the debt. We also understand that carbon dioxide stocks in our atmosphere will continue to increase if the rate at which carbon dioxide flows into the atmosphere is greater than the rate at which it drains out—an important insight in the application of carbon emissions reduction.

From Awareness To Action

With the help of adults, children’s intelligence about systems can be developed further, into models of better problem definition, problem solving, and design. This enables them to analyze and act in informed ways; aware of recurring patterns, they will be less likely to react viscerally and ineffectively and more likely to understand the patterns of behavior. They can use this understanding to correct their own actions, anticipate unintended consequences, and help others operate more effectively.

When children are systems literate, they help their parents learn, as well. For example, they can talk about and make visible “commons dilemmas”—those conflicts that arise around shared resources for which everyone is mutually responsible.

My four-year-old at the rotary is now a strapping 13-year-old. Not long ago, he ended up in a not-so-playful snowball fight with his brother. I took each one aside to find out what was...
Learning to Connect the Dots

continued from page 7

going on. They both told a similar story: A cutting comment from one led the other to comment back, which led the first boy to poke, the second boy to squash, and then prompted both to an out-and-out battle. This was an example of the common pattern called escalation. Feeling at my wit's end, I quickly sat them down and sketched a diagram that looked like this:

After her two sons fell into argument, the author presented them with this diagram to help illustrate how positive feedback, in their case, could lead to endless escalation.

“Look,” Jack said, “it’s a figure eight lying on its side. That’s infinity. This thing could go on forever.”

“And just keep getting worse,” his brother groaned.

As we talked about it, we realized together that the growing conflict was driven by each one trying to “out-cool” or “top-dog” the other. The more “cool” behavior one kid put on, the more the other wanted to squash it. Suddenly, they saw themselves as part of the “system,” rather than separate from it. They “got” that blaming each other wasn’t going to solve the problem. When they could see how their actions were actually fueling the actions of the other, they then could talk about how they might break the cycle. When I asked what they could do differently, the answer came easily. The poker would lighten up on the poking, and the squasher wouldn’t squash so much.

The rotary, of course, has long since been fixed; traffic is back to normal. In our family, we try to do our part to solve the problem of the commons. Though I still rely on the car to drive to soccer practice, we walk to buy groceries and we share eggs with neighbors from our own chickens. We try to talk in ways that make it easier to connect the dots in everyday situations. A common phrase in our house these days—*what if everyone did that?*—is our way of attempting to magnify the consequences of our individual actions so that we can imagine the broader impact.

Everyone is born with a natural intelligence about living systems. With just a little effort, you can encourage that natural intelligence in young people and remind them that their world is interconnected and dynamic, a tightly woven web of nature, people, issues, and events, and as such, it is both purposeful and meaningful.

Author’s note

REFERENCES

Connect the Dots continued on page 12
Draft Program
(Stay tuned - the program is still evolving.)

Pre-Conference Training Workshop
FRIDAY
9:00-5:00 Introductory Systems Workshop – Anne LaVigne, Creative Learning Exchange and Waters Foundation, and Alan Ticotsky, Innovation Academy Charter School

Systems Thinking and Dynamic Modeling Conference
SPECIAL: Throughout the conference, Jeff Potash and Jennifer Andersen, two experienced modelers with extensive K-12 experience, will meet with you by appointment to discuss your model or how to incorporate modeling into your curriculum.

SATURDAY
10:00-12:00 Keynote: What skills do kids need to complement and enhance SD to make meaning and gain knowledge? – Linda Booth Sweeney, Systems educator and author, with Brad Morrison, Brandeis University, and others
1:30-5:00 Workshops
1. Creating a Classroom Environment – Rob Quaden, Carlisle Public Schools, Carlisle MA; Alan Ticotsky, Innovation Academy Charter School, Tyngsboro MA
2. A Brief Introduction to Systems Thinking Tools – LeAnne Grillo, SoL Education Partnership; Ginny Wiley, Systems Thinking Collaborative
3. Using ST/SD to Address the Common Core – Sheri Marlin, Waters Foundation
4. Continuation of Friday Intro Workshop – Anne LaVigne, Creative Learning Exchange and Waters Foundation
5. Finding Systems, the News to Use – Warren Farr, system dynamicist and citizen advocate for system dynamics; Diana Fisher, system dynamics modeling teacher and author of Modeling Dynamics Systems and Lessons in Mathematics

7:30 Evening Session: Use of systems thinking and dynamic modeling and on-line education to interest students: A hypothetical charter school based on discovery learning and system dynamics – David Massias and Linda Nichols, Shadow Health

SUNDAY
8:30-10:00 Parallel Sessions
2. The Northbridge Experience – Sherri Travers, Northbridge High School, Northbridge, MA; Neal Mitchell, Consulting Engineer and system dynamics citizen advocate
3. STELLA Modeler: Creating Models on the iPad – Bob Eberlein, isee systems
4. Systems Thinking across the Curriculum: The IACS Experience – Alan Ticotsky and teachers from Innovation Academy, Tyngsboro, MA
5. Introducing Critical Thinking with System Dynamics in Indonesia: Developing a Model Learning and Teaching Approach and Systems Introduction for the Indonesian Context – Ken Moore, Ika Siti Utami and Risya Tazkia, Center for Research and Knowledge Exchange, Indonesia

10:30-12 Keynote: Group Modeling: Theory and Practice – George Richardson, Emeritus Professor, University at Albany, SUNY; Peter Hovmand, Washington University
1:30-2:00 Simulations of All Kinds – Jennifer Andersen and Anne LaVigne, Creative Learning Exchange
2:00-4:00 Simulation Exercises
1. Online Multi-User Sims – Anne LaVigne, CLE

Draft Program continued on page 11
Join us this summer at **Camp Snowball**! Do you want to make sure that our students are prepared for the future they will inherit? That what they are learning is more relevant and engaging? Do you want to carry out the promise of the Common Core? Come to camp as we scale up student success. Co-hosted by Peter Senge, author of *The Fifth Discipline: The Art and Practice of the Learning Organization*—and a team of experienced faculty and staff—students, educators, community and business partners will join together to revisit what student success really means.

At **Camp Snowball**, young people and adults will participate together in a rich array of workshops to build their capacity in these key 21st-century skills. By viewing the world through a systems lens, participants learn to: anticipate and assess decision-making outcomes, identify ways to positively impact their world through sustainability efforts, understand and address complex issues, and employ novel technologies for innovating solutions to daunting challenges. And because adults interact with students at camp, they can see how valuable and relevant students find these tools and approaches directly. The energy and enthusiasm is infectious! Don’t miss out.

Camp Snowball objectives: to develop educators’ capacity for teaching and using systems thinking and/or sustainability in their classrooms; to empower students to become leaders in their schools and communities by exposing them to these powerful ways of thinking and acting; to develop local teams that are working to implement these tools and perspectives in their own school systems; to build local community support for schools by engaging business and government leaders, educators, parents, students, and community members in jointly creating the conditions for ongoing innovation; to foster relationships and create long-term connections for regional, national, and international learning communities to continue this work beyond the conference; to learn directly from school systems and others who are accomplishing demonstrable, measurable results; to elevate awareness of the positive outcomes of these approaches locally, nationally, and internationally.

Register now at www.campsnowball.org!

Paying the Conference Forward

Chris DiCarlo, Innovation Academy Charter School

The Systems Thinking and Dynamics Modeling conference gave me the confidence to incorporate Systems Thinking lessons into my curriculum. Together with my principal, Greg Orpen, we started a new class called Environmental Systems. The class was separated into three units with an independent project at the end. Through models of Easter Island, Fish Banks, and the carbon cycle, we examined the effects of over-consumption of resources, and we attempted to develop policies that would help to make each of these systems more sustainable. Students then applied the systems thinking techniques that they learned in the class to a topic of their choice. Final projects ranged widely from the reintroduction of wolves in Yellowstone to air pollution in Beijing.

I am currently working with Alan Ticotsky to formally write up the curriculum from this class to share with the Creative Learning Exchange community. I have also pushed to include modeling components in my other classes. In physics, we used STELLA to model wind resistance on paper rockets. We then launched them and used that data to help calibrate our models so that they would give more accurate results. In my Financial Literacy class, we used STELLA to create an interest model. We looked at the effects of carrying a balance on a credit card. We then adapted the model to create scenarios for how to pay for college that involved both saving ahead and taking out loans. Student feedback was mostly positive for these units. While some students expressed that they had difficulty with the software, nearly everyone said that the techniques discussed in the class helped them get a better understanding of the systems that we studied.
Learn System Dynamics Modeling to Address National Standards in Math and Science: An Online Professional Development Opportunity

Diana M. Fisher

A sequence of three online courses teaching System Dynamics (SD) modeling for math and science instructors (of students ages 15 – 20+) has been developed. These courses provide extensive hands-on model building activities for the participants that can then be modified (or used as-is) for their students. The model-building lessons have been tested in a classroom setting.

1. Introduction to System Dynamics Modeling for Math and Science Instructors: Course 1: Basic Models
2. Introduction to System Dynamics Modeling for Math and Science Instructors: Course 2: More Advanced Models
3. System Dynamics Modeling: A Different Way to Think: Course 3: Building Original Models from the News

Each course consists of 10 sessions and will be capped at 15 participants. The sequence of courses provides a gentle introduction to SD modeling for those instructors who are new to system dynamics, but who appreciate the learning opportunities such modeling can provide for their students.

Dates: The first course will be offered starting June 24, 2014 and last for 10 consecutive weeks. The first course will also be offered starting in mid-September 2014 and last for 20 weeks, allowing participants more time to complete assignments because they will have returned to their teaching responsibilities.

Credit option: Each course has a 3-credit option attached, awarded by the Curriculum and Instruction Department at Portland State University.

Cost: The cost for the course is $570 without credit and $750 with 3 credits.

For more information, please contact Diana Fisher at dfisher@ccmodelingsystems.com.
My Experience with System Dynamics

continued from page 2

(c) where there is apparent complication, we should assume it to be ‘not-yet-understood complexity’. Of course complication and complexity are really two very different things.

Lastly, coming into contact with System Dynamics profoundly affected the way I thought and taught science. I was able to nuance my thinking (using stock-flow control as the basis of how and what I teach to students). SD allowed me to let go of metaphors. Instead I build, compare and play with abstract and physical analogues—truly a much more satisfying experience. Please thank Professor Forrester for an incredible insight into the ‘go of things.’ And please thank the folks at isee for an amazing piece of software.

To paraphrase a few, including A. Einstein: We have the technology to make it simple, but no more simple than it needs to be.

Ian Parker can be reached at iwpq@icloud.com.

Learning to Connect the Dots

continued from page 8

12 Booth Sweeney, L. When a Butterfly Sneezes: A guide for helping children explore interconnections in our world through favorite stories. (Waltham, MA: Pegasus Communications, 2001)

Invest in Education!

Your financial support of our effort here at The Creative Learning Exchange is always appreciated. You may donate any amount you wish; perhaps $50.00 is a reasonable amount for a year. All contributions are tax-deductible.

Enclosed is _________________ to The Creative Learning Exchange to help invest in the future of K-12 systems education.

Name___

Address___

__

E-mail___

THANK YOU!
The Creative Learning Exchange, 27 Central Street, Acton, MA 01720

The Creative Learning Exchange
27 Central Street
Acton, MA 01720
Phone 978-635-9797
Fax 978-635-3737
www.clexchange.org

Trustees
Jay W. Forrester
Davida Fox-Melanson
Brad Morrison
George P. Richardson
Stephen C. Stuntz

Executive Director
Lees N. Stuntz
stuntzln@clexchange.org

The Creative Learning Exchange is a trust devoted to encouraging exchanges to help people to learn through discovery. It is a non-profit educational institution and all contributions to it are tax deductible.