GENERIC STRUCTURES
IN OSCILLATING SYSTEMS I

Produced for the
MIT System Dynamics in Education Project

Under the Supervision of
Dr. Jay W. Forrester
Sloan School of Management
Massachusetts Institute of Technology

BY

Celeste V. Chung
June 17, 1994

Vensim Examples added in October 2001

Copyright © 2001 by MIT
Permission granted for non-commercial educational purposes
Table of Contents

1. INTRODUCTION ... 5

2. THE PENDULUM MODEL .. 7

3. TRANSFERABLE STRUCTURES .. 11

4. EMPLOYMENT INSTABILITY MODEL ... 13

5. CONCLUSION ... 16

6. APPENDIX ... 17
 6.1. APPENDIX 1: A FURTHER PHYSICS EXPLANATION .. 17
 6.2. APPENDIX 2: THE PENDULUM MODEL .. 20
 6.2.1. THE PENDULUM MODEL EQUATIONS ... 20
 6.3. APPENDIX 3: THE EMPLOYMENT INSTABILITY MODEL 22
 6.3.1. THE EMPLOYMENT INSTABILITY MODEL EQUATIONS 22

6. VENSIM EXAMPLES .. 25
INTRODUCTION

Bob, Ann, and Sam meet for dinner after a hard day at work. Bob, a high school physics teacher, tells them about his difficulty in explaining the pendulum problem to his class. Ann, a plant manager, does not understand his situation and has little interest in physics. Interrupting, she talks about her problems in regulating her inventory of widgets and her hiring/firing of factory workers.

Sam, a mutual friend, listens to both stories. On the surface, both problems seem to differ drastically. What similarities could there be between physics and manufacturing?

However, as Sam listened more closely, he began to notice similarities in the behavior of the two scenarios. Both seem to have fluctuating behavior. Sam recalled the system dynamics principles he learned in college. Forming a simple mental model, he pictured a two-level structure that could drive either example.

A two-level structure can display many modes of behavior. The following will focus on one specific mode of behavior—sustained oscillation.

A simple model demonstrating sustained oscillation contains two stocks, each influencing the flow to the other. The dependency of each flow on the opposite stock is such that the system never comes to rest.

1 Celeste V. Chung is an undergraduate at the Massachusetts Institute of Technology, majoring in Management Science, June 1994. She is a participant of the System Dynamics in Education Project under Professor Jay W. Forrester.
Sam first explains the driving forces of oscillation in the pendulum model. He then transfers information from the pendulum model to the employment instability model.²

Through the pendulum and employment instability examples, you will learn about a simple two-level structure generating sustained oscillation. As you progress from the first example to the second, you may recognize a striking resemblance in the two models, with differences in only names and parameter values. The underlying structure causing the sustained oscillation remains the same for both models.

² Note: This recurring systems principle, transferable or generic structures, is prevalent throughout Road Maps.
THE PENDULUM MODEL

Bob’s high school physics class covers the following simple pendulum system, consisting of a mass attached to a rigid rod pivoting at the ceiling as shown in Figure #1. In a world with no external forces, such as friction, the force of gravity and tension are the sole forces acting upon the mass. If this pendulum system is initially in equilibrium\(^3\) and no additional forces are exerted on it, the mass will stay in its equilibrium position forever.\(^4\)

If the mass is pulled right or left, gravity provides a restoring force to drive the mass toward its equilibrium position. The tension force and the gravity, shown in Figure #2 on the next page, act on the mass to produce the motion. For this exercise, we will assume that the swing of the pendulum is small, around 10-20 cm for a 1 meter pendulum. For such small oscillations, we can assume the motion of the mass to be essentially horizontal. We will refer to the horizontal position of the mass with the variable \(X\).

\(^3\) Equilibrium is a state of balance between opposing forces or actions.

\(^4\) This is Newton’s First Law — A body at rest remains at rest and a body in motion remains in motion unless acted upon by an external force.
Assuming that the equilibrium position is defined as \(X = 0 \), Figure #2 (a) shows the mass in a positive position. Gravity, the restoring force, impels the mass toward its equilibrium position. The mass overshoots to the negative position shown in Figure #2 (b). Here, the position is negative, and gravity again attempts to drive the mass back to the equilibrium position. The mass reaches equilibrium and overshoots to the positive position. Without any external forces such as friction, this back and forth or oscillatory motion would continue forever. For a more in-depth explanation, see Appendix 1.

![Diagram of a simple pendulum system](image)

Figure #2: (a) Mass has positive position (displacement); (b) Mass has negative position

Sam’s two level mental model of this simple pendulum system is modeled with the stock and flow diagram in Figure #3 on the following page. The **Position** stock represents the position mentioned earlier, with zero representing the **Desired Position**. Positive and negative positions represent the mass’s horizontal displacement right and left of the vertical equilibrium line, respectively. The **Change in Position** is equal to the **Velocity**.
The **Gap** is the difference between the Desired Position and the current Position. The **Gap**, along with the influence of **gravity** and the **length of pendulum rod**, determines the **Change in Velocity**. The effect of gravity and the length of the rod can be explained by using a bit of physics.

The **Change in Velocity** is:

\[
\text{Change in Velocity} = \frac{\text{gravity}}{\text{length of pendulum rod}} \times \text{Gap}^5
\]

The **Change in Velocity** is the acceleration measured in meters per second per second. The sustained oscillatory behavior shown in Figure #4 is driven by the Change in Position’s dependence on Velocity and the Change in Velocity’s dependence on Position.

A derivation of the above equation is included in Appendix 1, but those of you who are unfamiliar with physics can still mentally justify the equation with a bit of intuition:

^5For those more interested in the physics aspect, please note that this is a simplified relationship for the purpose of this model.
Picture a pendulum with a meter long rod with a weight attached to the end. What happens if you pull the weight 20 cm to the right? The weight will swing back and forth slowly until it stops due to friction. If there were no friction, it would never stop. Picture that same pendulum but with only a 6 inch rod. What happens now if you pull the weight to the right? The weight still swings back and forth, but more quickly.

Picture the same pendulum on the moon. In the low gravity environment, the pendulum would swing much slower. If it were on the sun, the increased gravity would cause it to swing faster. You should be able to see that all of this information is summed up in the equation for **Change in Velocity**.

![Figure #4: Sustained Oscillation of Position and Velocity](image)

The two-level Pendulum Model is such that the largest Change in Position occurs each cycle at exactly the point where the Change in Velocity equals zero. When one stock is ready to come to rest, the other stock is moving at its fastest. This is the underlying force driving the sustained oscillation.

The dinner is ending, and Bob, Ann, and Sam order coffee. At this point, Ann nods her head. She understands the physics and the underlying structure of the oscillating pendulum. However, she does not understand how a pendulum can have the same structure as her employee instability problem.

Sam explains the idea of transferable structures. Changing the parameter names and values transforms the Pendulum Model into the Employment Instability model as shown in Figure #5. The oscillatory behavior in the Employment Instability model takes months to complete each cycle instead of seconds. Thus, the parameter values must change to realistically represent the system.

![Diagram of transferable structures](image)

Figure #5: Changing the Parameter Names

Note that the Employment Instability model explained further in the next section has a few different converters not shown in this figure. Although the two models are not identical, the underlying structure is the same. The simplified generic structure which underlies both models is shown in Figure #6. Many
converters can be used to model each specific situation or story but the structure will still remain unchanged.

Ann quickly protests. What could physics and manufacturing possibly have in common? Sam quickly reassures her that her particular problem is different, and thus the parameter names and values are specific to her situation. However, the underlying nature of the two situations is the same and thus the model structure is unchanged. By transferring what she learned from exploring the Pendulum Model, she can easily understand the driving forces of her system.
EMPLOYMENT INSTABILITY MODEL

Figure #7 shows the same underlying two-level structure as the Pendulum model. The parameter names were changed in Figure #5 from the Pendulum model to the Employment Instability model in Figure #7.

What is the driving force behind Ann’s Employment Instability problem? Let’s first look at the Inventory. The Inventory is regulated by Production less Sales. Sales is constant at 20,000 Widgets per year. Each employee’s Productivity is 100 Widgets per year, the number each person can make per year. Thus the Production is equal to Productivity * Employment, the number of employees. Production less Sales, which is the change in Inventory per year is

\[
\text{Production less Sales} = \text{Production} - \text{Sales} \\
\text{Production less Sales} = (\text{Productivity} \times \text{Employment}) - 20,000
\]
Net Change in Employment is the net effect of all hiring and firing in the firm. The Gap is the discrepancy between Desired Inventory and Inventory. The Time to Close Inventory Gap is a parameter determined by Ann's firm. The Time to Close Inventory Gap and the Gap determine the Production Needed to Close Gap.

\[
\text{Production Needed to Close Gap} = \frac{\text{Gap}}{\text{Time to Close Inventory Gap}}
\]

If the urgency to ship widgets is high, the time to close the inventory gap is low, and the production needed to close the gap is high. If there is a lot of time to close inventory gap, the production does not need to be as high.

The Production Needed to Close Gap and the Productivity determine the **Number of People Needed for Hire**. Since we know how many widgets we need to produce in a certain amount of time, we can determine how many people we need to hire by knowing the productivity.

\[
\text{Number of People Needed for Hire} = \frac{\text{Production Needed to Close Gap}}{\text{Productivity}}
\]

Hence, the equation for **Net Change in Employment** is:

\[
\text{Net Change in Employment} = \frac{\text{Number of People Needed for Hire}}{\text{Hiring Delay}}
\]

The **Hiring Delay** is the time it takes to hire and train new employees. In this case, it is 3 months or 1/4 years. This model produces the oscillatory behavior shown in Figure #8.
Figure #8: Sustained Oscillation of Inventory and Employment

NOTE: Inventory and Employment are on different scales.

Note the similarity between this graph and the Pendulum Model graph. The shape of the behavior looks the same. However, the time scale differs greatly. The Employment Instability Model goes through one cycle in about two years while the Pendulum Model goes through one in about 2 seconds. The magnitudes of the stocks are also different.
CONCLUSION

Both Bob and Ann were stunned by Sam’s explanation. While Ann’s problems as a plant manager and Bob’s difficulty as a physics teacher seemed completely different, they found that they had a lot in common.

They learned that this two-level generic structure drove the oscillating behavior in both of their systems. Sam taught them that by first understanding the underlying structure of this two-level model, both of them were able to transfer the knowledge from their own situation to the other. They utilized the system dynamics principle of transferable structures.

Sam not only taught them about transferable structures. He also showed that sustained oscillation can be generated by a simple two-level structure. The two-level models are such that in each cycle the highest rate of change of one flow occurs at the moment when the opposite flow equals zero. This is the underlying force driving the sustained oscillation.

After this short lesson on sustained oscillation and transferable structures, Ann and Bob returned to their respective jobs the following day. Both were able to use the newly developed models to simulate classroom experiments and test management strategies quickly and accurately. System dynamics gave them insight into their problems so they could begin forming effective manufacturing policies and physics lesson plans for the future.
Appendix 1: A Further Physics Explanation

Figure #9 describes the arc motion in detail. The mass is initially pulled to the position shown in Figure #9(a). T is the tension force, the force from the rigid rod's attachment to the ceiling, and g is gravity. These two forces act together to produce a net restoring force represented by the bold arrow. As the mass moves, the position X changes and thus the direction of the restoring force also changes to Figure #9(b).

![Figure #9: Mass with tension and gravity forces acting upon it.](image)

Figure #9(b) shows the pendulum an instant later. The restoring force is more horizontal and smaller. This trend continues until the mass reaches the equilibrium position as shown in Figure #9(c). Here, the tension force and gravity exactly balance each other so the net restoring force is zero. However, the velocity has accumulated such that the momentum drives the mass horizontally and overshoots to the other side.

On the negative displacement side, the mass would similarly increase to its full negative position, as was previously shown in Figure #2(b). Again, gravity and tension work together to drive the mass back to the equilibrium position. The mass reaches equilibrium and overshoots to the positive position. Without any external forces, this back and forth or oscillatory motion would continue forever.
Derivation of motion equations:

Figure #10: Diagram of pendulum

Figure #10 shows a diagram of the pendulum. The gap X represents the horizontal displacement of the pendulum from the equilibrium position. To simplify the physics of this system assume that the pendulum only has small oscillations. For our pendulum this means about 10-20 cm. For such small oscillations, the motion of the mass on the end of the pendulum is essentially horizontal.

The diagram in Figure #9 contains two triangles. One is formed by the pendulum’s displacement X and its length L. The other triangle is formed by the acceleration of gravity g and the acceleration of the mass a. A bit of simple
trigonometry will show that angle 1 = angle 2; and the two triangles are similar.
By similar triangles:

\[
\frac{X}{L} = \frac{a}{g} \quad (1)
\]

This can be rearranged to:

\[
a = \frac{g}{L} \times X \quad (6)
\]

In our model:
a = Change in Velocity
\(g\) = gravity
\(L\) = length of pendulum rod
\(X\) = Gap

So we get our equation for change in velocity:

\[
\text{Change in Velocity} = \left(\frac{\text{gravity}}{\text{length of pendulum rod}}\right) \times \text{Gap}
\]

NOTE: Several simplifications are included in this derivation in the interest of making it understandable to someone with little or no physics experience. Those of you with more experience may wish to perform a more rigorous derivation on your own and compare the results with this simplified model.
The Pendulum Model Equations

Position

\[
\text{Position}(t) = \text{Position}(t - dt) + (\text{Change_in_Position}) \times dt
\]

INIT Position = 0.15

DOCUMENT: The Position represents the horizontal displacement. Initially, the mass is displaced 15 centimeters.

UNITS: meters

INFLOWS:

- **Change_in_Position** = **Velocity**

DOCUMENT: The Change in Position is the Velocity.

UNITS: meters/second

Velocity

\[
\text{Velocity}(t) = \text{Velocity}(t - dt) + (\text{Change_in_Velocity}) \times dt
\]

INIT Velocity = 0

DOCUMENT: The Velocity represents the rate of change of the Position. Initially, the Velocity is zero.
DOCUMENT: UNITS: meters/second

INFLOWS:
 ○ Change_in_Velocity = (gravity/length_of_pendulum_rod)*Gap
DOCUMENT: UNITS: meters/second per second

 ○ Desired_Position = 0
DOCUMENT: This is the equilibrium position of the pendulum.
UNITS: meters

 ○ Gap = Desired_Position-Position
DOCUMENT: The gap is the difference in the Desired Equilibrium Position and the current Position.
UNITS: meters

 ○ gravity = 9.8
DOCUMENT: UNITS: meters/second per second

 ○ length_of_pendulum_rod = 1
DOCUMENT: units: meters
Appendix 3: The Employment Instability Model

The Employment Instability Model Equations

Employment = 200
UNITS: people

INFLOWS:

Net_Change_in_Employment = Number_of_People_Needed_for_Hire/Hiring_Delay

DOCUMENT: Hiring Less Firing is the number of people needed for hire divided by the hiring delay.
UNITS: people / year

Inventory = 25000
DOCUMENT: Inventory is the amount of widgets on hand.
UNITS: widgets
INFLOWS:

- **Production_less_Sales** = (Employment*Productivity) - 20000

 DOCUMENT: Production less Sales is the change in inventory per year. Each employee produces 100 widgets per year and 20,000 widgets are sold.

 UNITS: widgets/year

- **Productivity** = 100

 DOCUMENT: Productivity is the number of widgets each employee makes per year.

 UNITS: widgets/(person*year)

- **Desired_Inventory** = 20,000

 DOCUMENT: The desired inventory is 20,000 widgets, which is the yearly sales.

 UNITS: widgets

- **Gap** = Desired_Inventory-Inventory

 DOCUMENT: The Gap is the difference in Desired Inventory and the current Inventory.

 UNITS: widgets

- **Production_Needed_to_Close_Gap** = \(\frac{\text{Gap}}{\text{Time_to_Close_Inventory_Gap}} \)

 DOCUMENT: The Production of Widgets needed to close the inventory gap is the number of widgets needed divided by the time desired to close the inventory gap.

 UNITS: widgets/year

- **Number_of_People_Needed_for_Hire** = \(\frac{\text{Production_Needed_to_Close_Gap}}{\text{Productivity}} \)

 DOCUMENT: The number of people needed for hire is the desired production needed to close the inventory gap divided by the productivity, the number of widgets each person can produce per year.

 UNITS: people

- **Time_to_Close_Inventory_Gap** = .5

 DOCUMENT: Time to Close Inventory Gap is the desired time with which the plant manager would like the inventory discrepancy to be fixed.

 UNITS: years
Hiring Delay = 1/4

DOCUMENT: Time to adjust is the time required to hire and train new employees to work to full productivity. Here, the time is three months or 1/4 of the year.

UNITS: years
The Pendulum Model

Documentation for Pendulum Model

(01) change in position = Velocity
Units: meters/second
The Change in Position is the Velocity.

(02) change in velocity = GRAVITY*gap/LENGTH OF PENDULUM ROD
Units: meters/(second*second)

(03) DESIRED POSITION = 0
Units: meters
This is the equilibrium position of the pendulum.

(04) FINAL TIME = 10
Units: second
The final time for the simulation.

(05) \(\text{gap} = \text{DESIRED POSITION} - \text{Position} \)
Units: meters
The gap is the difference in the Desired Equilibrium Position and the current Position.

(06) \(\text{GRAVITY} = 9.8 \)
Units: meters/(second*second)

(07) \(\text{INITIAL POSITION} = 0.15 \)
Units: meters

(08) \(\text{INITIAL TIME} = 0 \)
Units: second
The initial time for the simulation.

(09) \(\text{INITIAL VELOCITY} = 0 \)
Units: meters/second

(10) \(\text{LENGTH OF PENDULUM ROD} = 1 \)
Units: meters

(11) \(\text{Position} = \text{INTEG} \) (change in position, \(\text{INITIAL POSITION} \))
Units: meters
The Position represents the horizontal displacement. Initially, the mass is displaced by initial position.

(12) \(\text{SAVEPER} = 1 \)
Units: second
The frequency with which output is stored.

(13) \(\text{TIME STEP} = 0.03125 \)
Units: second
The time step for the simulation.

(14) \(\text{Velocity} = \text{INTEG} \) (change in velocity, \(\text{INITIAL VELOCITY} \))
Units: meters/second

As you would notice when you simulate the model, the graph for position shows expanding oscillations. This behaviour is contrary to what is expected. The Euler integration method causes integration errors that result in these expanding oscillations. The Runge-Kutta integration method can be used to solve this problem. The following section explains how to detect such an error and correct it using Runge-Kutta integration.
Figure 12: Behaviour of the system under different time steps with Euler integration

The time step used when simulating a model should be lowered until two successive time steps give the same behaviour. This shows that the time step used is small enough to eliminate integration errors. The two smallest time steps provided by Vensim are used in the above example. The graph still shows a difference in the behaviour of the model. Therefore, we can deduce that the integration is still faulty. Runga-Kutta integration can be used in such instances to get an accurate integration.

Figure 13: Behaviour of the system under different time steps with Runga-Kutta integration

When using the Runga-Kutta integration method the behaviour of the system does not change with the time step. Therefore, we can assume that there are no integration errors.
To change from Euler Integration to Runge-Kutta Integration in Vensim, press the “Simulation Control” button, which is left of the “Set” button in the menu at the top of the main page. In the new window, under “Integration Technique” check the “RK4-Auto” option, then “Simulate” to exit.

Figure 14: Vensim Equivalent of Simulation for Position and Velocity
The Employment Instability Model

![Diagram of Employment Instability Model]

Figure 15: Vensim Equivalent of Figure 7: Employment Instability Model

Documentation for Employment Instability Model

1. **(01) DESIRED INVENTORY** = 20000
 Units: widgets
 The desired inventory is 20,000 widgets, which is the desired sales.

2. **(02) Employment** = INTEG (net change in employment, INITIAL EMPLOYMENT)
 Units: people

3. **(03) FINAL TIME** = 10
 Units: year
 The final time for the simulation.

4. **(04) gap** = DESIRED INVENTORY - Inventory
 Units: widgets
 The Gap is the difference in Desired Inventory and the current Inventory.
(05) **HIRING DELAY = 0.25**
Units: year
Time to adjust is the time required to hire and train new employees to work to full productivity. Here, the time is three months or 1/4 of the year.

(06) **INITIAL EMPLOYMENT = 200**
Units: people

(07) **INITIAL INVENTORY = 25000**
Units: widgets

(08) **INITIAL TIME = 0**
Units: year
The initial time for the simulation.

(09) Inventory = INTEG (production less sales, INITIAL INVENTORY)
Units: widgets
Inventory is the number of widgets on hand.

(10) net change in employment = number of people needed for hire/HIRING DELAY
Units: people/year
Hiring less firing is the number of people needed for hire divided by the hiring delay.

(11) number of people needed for hire =
production needed to close gap/ PRODUCTIVITY
Units: people
The number of people needed for hire is the desired production needed to close the inventory gap divided by the productivity, the number of widgets each person can produce per year.

(12) production less sales = (Employment* PRODUCTIVITY)-SALES
Units: widgets/year
Production less Sales is the change in inventory per year. Each employee produces a number of widgets per year equal to the productivity and the number of widgets sold is equal to the sales.

(13) production needed to close gap = gap/TIME TO CLOSE INVENTORY GAP
Units: widgets/year
The Production of Widgets needed to close the inventory gap is the number of widgets needed divided by the desired Time to Close the Inventory Gap.

(14) **PRODUCTIVITY = 100**
Units: widgets/(people* year)
Productivity is the number of widgets each employee makes per year.
(15) SALES = 20000
Units: widgets/year

(16) SAVEPER = TIME STEP
Units: year
The frequency with which output is stored.

(17) TIME STEP = 0.0625
Units: year
The time step for the simulation.

(18) TIME TO CLOSE INVENTORY GAP = 0.5
Units: year
Time to Close Inventory Gap is the desired time with which the plant manager would like the inventory discrepancy to be fixed.

Graph of Inventory and Employment

<table>
<thead>
<tr>
<th>Employment: Current</th>
<th>Inventory: Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 people</td>
<td>20,000 widgets</td>
</tr>
<tr>
<td>40,000 widgets</td>
<td></td>
</tr>
<tr>
<td>500 people</td>
<td>0 widgets</td>
</tr>
<tr>
<td>0 people</td>
<td>0 widgets</td>
</tr>
</tbody>
</table>

Figure 16: Vensim Equivalent of Figure 8: Sustained Oscillation of Inventory and Employment